Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Copper(II) manganese(II) orthophosphate, $\mathrm{Cu}_{0.5} \mathrm{Mn}_{2.5}\left(\mathrm{PO}_{4}\right)_{2}$

Andrew D. Bond, ${ }^{\text {a }}$ Søren P. V. Foghmoes ${ }^{\text {b }}$ and Terence E. Warner ${ }^{\text {b* }}$

${ }^{\text {a }}$ University of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense, Denmark, and ${ }^{\mathbf{b}}$ University of Southern Denmark, Institute of Chemical Engineering, Biotechnology and Environmental Technology, Niels Bohrs Allé, 5230 Odense, Denmark
Correspondence e-mail: tew@kbm.sdu.dk

Received 3 December 2010
Accepted 24 December 2010
Online 22 February 2011
The title compound, $\mathrm{Cu}_{0.5} \mathrm{Mn}_{2.5}\left(\mathrm{PO}_{4}\right)_{2}$, is a copper-manganese phosphate solid solution with the graftonite-type structure, viz. $(\mathrm{Mn}, \mathrm{Fe}, \mathrm{Ca}, \mathrm{Mg})_{3}\left(\mathrm{PO}_{4}\right)_{2}$. The structure has three distinct metal cation sites, two of which are occupied by $\mathrm{Mn}^{\mathrm{II}}$ and one of which accommodates $\mathrm{Cu}^{\mathrm{II}}$. Incorporation of $\mathrm{Cu}^{\mathrm{II}}$ into the structure distorts the coordination geometry of the metal cation site from five-coordinate square-pyramidal towards four-coordinate flattened tetrahedral, and serves to contract the structure principally along the c axis.

Comment

The copper-manganese phosphate solid solution $\mathrm{Cu}_{0.15^{-}}$ $\mathrm{Mn}_{2.85}\left(\mathrm{PO}_{4}\right)_{2}$, with the graftonite-type structure, viz. $(\mathrm{Mn}, \mathrm{Fe}, \mathrm{Ca}, \mathrm{Mg})_{3}\left(\mathrm{PO}_{4}\right)_{2}$ (Calvo, 1968), was first prepared by Nord (1982) via a reaction between the end members, $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ and $\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, at 1073 K for one month in an evacuated silica-glass ampoule. The product material was analysed using powder X-ray diffraction, and the monoclinic unit-cell parameters at 298 K were reported as $a=8.803$ (6) \AA, $b=11.454$ (9) \AA and $c=6.267$ (5) $\AA, \beta=99.00(6)^{\circ}$ and $V=$ 624.1 (12) \AA^{3}. No information was obtained concerning the location of $\mathrm{Cu}^{\mathrm{II}}$ within the structure. Apparently, Nord was unable to increase the solubility of $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ within $\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ beyond $5 \mathrm{~mol} \%$ under these preparative conditions, and he noted that 'the low solubility of $\mathrm{Cu}^{\text {II }}$ in $\mathrm{Mn} / \mathrm{Cu}$ orthophosphate is curious, considering this ion's large tendency to enter into very distorted environments'. We have been able to prepare a significantly more copper-rich composition, the title compound, $\mathrm{Cu}_{0.5} \mathrm{Mn}_{2.5}\left(\mathrm{PO}_{4}\right)_{2}$, corresponding to approximately $17 \mathrm{~mol} \% \mathrm{Cu}^{\mathrm{II}}$ (in terms of the metal content), via a reaction between the constituent oxides at 1223 K under argon.

Since Fe and Mn are known to substitute for one another within the alluaudite family of minerals, represented by the general formula $(\mathrm{Na}, \mathrm{Ca}, \square)_{2}(\mathrm{Fe}, \mathrm{Mn})_{3}\left(\mathrm{PO}_{4}\right)_{3}$ (Moore \& Ito,
1979), it seemed reasonable to attempt preparation of the Mn analogue of the known Cu -containing alluaudite-type phase, $\mathrm{Cu}_{1.35} \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{3}$ (Warner et al., 1993). However, attempts to prepare the composition $\mathrm{Cu}_{1.5} \mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{3}$ yielded a material for which the powder X-ray diffraction pattern showed no resemblance to that of the alluaudite structure, and instead indicated the presence of a major phase with the graftonitetype structure. Consequently, a single crystal was selected for further analysis.

The single-crystal analysis confirmed the graftonite-type structure of the title compound, $\mathrm{Cu}_{0.5} \mathrm{Mn}_{2.5}\left(\mathrm{PO}_{4}\right)_{2}$. It consists of three different cation polyhedra linked through edge- and corner-sharing of O atoms from the $\mathrm{PO}_{4}{ }^{3-}$ groups (Figs. 1 and 2). The $\mathrm{Cu}^{\mathrm{II}}$ content is accommodated at the $\mathrm{Mn} 2 / \mathrm{Cu} 2$ site. Atom Mn1 occupies an essentially six-coordinate distorted octahedral environment, with Mn1-O bond distances in the range 2.0923 (16) -2.4125 (17) \AA (Table 1). A further contact of 2.7617 (17) \AA is made to atom O3, which led Calvo (1968) to describe the coordination geometry of Mn 1 as an 'irregular pentagonal bipyramid'. Atom Mn3 occupies a five-coordinate environment with a geometry that approximates squarepyramidal (Addison parameter $\tau=0.38$; Addison et al., 1984), with atom $\mathrm{O} 2^{\mathrm{vi}}$ at the apical position [symmetry code: (vi) $1+x$, $y, z]$. The $\mathrm{Mn} 3-\mathrm{O}$ bond distances are in the range 2.0359 (16)-2.1892 (16) A (Table 1). For the mixed cation site, $\mathrm{Mn} 2 / \mathrm{Cu} 2$, atom Mn 2 has a distorted square-pyramidal geometry $(\tau=0.18)$ made up of atoms $\mathrm{O} 3, \mathrm{O} 4, \mathrm{O} 6^{\mathrm{iv}}, \mathrm{O} 7^{7 i}$ and O8 ${ }^{\mathrm{v}}$ [symmetry codes: (ii) $1-x,-y, 1-z$; (iv) $x, y,-1+z$; (v) $-x,-y, 1-z]$, with $\mathrm{O}{ }^{\mathrm{ii}}$ at the apical position. The $\mathrm{Mn} 2-\mathrm{O}$ distances are in the range 1.885 (3) -2.491 (2) \AA (Table 1). The Cu 2 site lies close to that of Mn 2 , but shifted away from atom O3 to give a $\mathrm{Cu} 2-\mathrm{O} 3$ distance of 2.913 (2) A. Thus, the coordination environment of Cu 2 resembles more closely a

Figure 1
The coordination environments of the three metal cation sites, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Atoms Mn2 and Cu2 have a site-occupancy factor of 0.5 . (Symmetry codes correspond to those in Table 1.)

Figure 2
A polyhedral representation of the structure, viewed approximately along the c axis. (In the electronic version of the paper, Mn 1 polyhedra are red, $\mathrm{Mn} 2 / \mathrm{Cu} 2$ polyhedra are yellow, Mn 3 polyhedra are blue and PO_{4} polyhedra are grey.)
flattened tetrahedron, with the bond distances to $\mathrm{O} 4, \mathrm{O}^{\mathrm{iv}}, \mathrm{O} 7^{\mathrm{ii}}$ and $\mathrm{O8}^{\mathrm{v}}$ in the range 1.955 (2)-1.993 (2) \AA. The incorporation of $\mathrm{Cu}^{\mathrm{II}}$ at the Mn 2 site is consistent with the statement made by Calvo (1968) that 'the coordination number of site II can be changed homogeneously from four to five by altering the chemical composition'.
The graftonite-type crystal structure of the end member manganese orthophosphate, $\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, has not been published to date, although two other crystal modifications have been described for this compound (Stephens \& Calvo, 1969; El Bali et al., 2000; Massa et al., 2005). The unit-cell parameters for graftonite-type $\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ have been reported by Calvo (1968) to be $a=8.80$ (1) $\AA, b=11.45$ (2) \AA and $c=$ 6.25 (5) $\AA, \beta=98.3$ (2) ${ }^{\circ}$ and $V=623$ (1) \AA^{3}. Thus, the incorporation of $17 \mathrm{~mol} \% \mathrm{Cu}$ iI into $\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in the title compound reduces the unit-cell volume by approximately $13 \AA^{3}$ compared with $\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, which is slightly more than the reductions observed on the incorporation of an equivalent mole fraction of $\mathrm{Co}^{\mathrm{II}}$ (approximately $10 \AA^{3}$) or $\mathrm{Fe}^{\mathrm{II}}$ (approximately $8 \AA^{3}$) (Nord, 1982), consistent with the expected cation sizes. The largest change in the unit-cell parameters compared with $\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is observed for the c axis, which lies approximately parallel to the $\mathrm{O} 4-\mathrm{Cu} 2 / \mathrm{Mn} 2-$ O^{iv} bonds (Fig. 1). This indicates that the change in coordination geometry from five-coordinate for $\mathrm{Mn}^{\text {II }}$ towards fourcoordinate for $\mathrm{Cu}^{\text {II }}$ serves to pull together the O 4 and O6 corners of neighbouring Mn1 polyhedra, thereby contracting the structure along this direction.

It is interesting to note that it has not been possible, so far, to prepare a copper-manganese phosphate with the alluau-dite-type structure, nor indeed a copper-iron phosphate with the graftonite-type structure. It seems likely that the relative stability of $\mathrm{Mn}^{\mathrm{II}}$ over $\mathrm{Mn}^{\text {III }}$ favours the co-existence of $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Mn}^{\mathrm{II}}$ in the title compound, compared with the require-
ment for mixed valency $\left(\mathrm{Mn}^{\mathrm{II}} / \mathrm{Mn}^{\mathrm{III}}\right)$ within an alluaudite-type phase.

Experimental

An attempt was made to prepare a 10 g specimen of the hypothetical copper-manganese orthophosphate $\mathrm{Cu}_{1.5} \mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{3}$ using a method similar to that described by Warner et al. (1993) for preparation of the analogous alluaudite-type phase $\mathrm{Cu}_{1.35} \mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{3}$. It was considered plausible that the following reaction might occur at high temperature: $0.75 \mathrm{Cu}_{2} \mathrm{O}+1.5 \mathrm{Mn}_{2} \mathrm{O}_{3}+1.5 \mathrm{P}_{2} \mathrm{O}_{5} \rightarrow \mathrm{Cu}_{1.5} \mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{3}+0.5 \mathrm{O}_{2}(\mathrm{~g})$.

The chemical reagents were purchased from Sigma-Aldrich. Appropriate amounts of $\mathrm{Cu}_{2} \mathrm{O}(97 \%), \mathrm{Mn}_{2} \mathrm{O}_{3}(99 \%)$ and $\mathrm{NH}_{4} \mathrm{H}_{2} \mathrm{PO}_{4}$ ($99.99+\%$), corresponding to the composition $\mathrm{Cu}_{1.5} \mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{3}$, were ground together in an agate pestle and mortar. This mixture was placed in an alumina boat (SRX61, Almath Ltd), which was contained within a larger alumina boat (SRX110, Almath Ltd) in order to reduce the risk of spillage, and then heated under a flowing atmosphere of $\operatorname{argon}\left(99.99 \%, 0.51 \mathrm{~min}^{-1}\right)$ in a Lenton LTF16/50/180 tube furnace (with appropriate gas-flow attachments) to 673 K at a rate of $300 \mathrm{~K} \mathrm{~h}^{-1}$. After 5 h at 673 K , the furnace was heated further to 1223 K at a rate of $300 \mathrm{~K} \mathrm{~h}^{-1}$. After 7 h at 1223 K , the furnace was cooled to ambient temperature at a rate of $300 \mathrm{~K} \mathrm{~h}^{-1}$. The powder X-ray diffraction pattern of the bulk product was consistent with that of the title compound, with no indication of any other crystalline phase.

Crystal data

$\mathrm{Cu}_{0.5} \mathrm{Mn}_{2.5}\left(\mathrm{PO}_{4}\right)_{2}$
$M_{r}=359.06$
Monoclinic, $P 2_{1} / c$
$a=8.8428$ (3) \AA 。
$b=11.5331$ (4) \AA
$c=6.0539(2) \AA$
$\beta=98.712(2)^{\circ}$

Data collection

Bruker-Nonius X8 APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.467, T_{\text {max }}=0.696$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$	127 parameters
$w R\left(F^{2}\right)=0.050$	$\Delta \rho_{\max }=0.47 \mathrm{e} \mathrm{A}^{-3}$
$S=1.09$	$\Delta \rho_{\min }=-0.63 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Selected bond lengths (\AA).

Mn1-O1 ${ }^{\text {i }}$	2.2425 (15)	$\mathrm{Mn} 2-\mathrm{O} 8^{\text {v }}$	2.301 (2)
$\mathrm{Mn} 1-\mathrm{O} 1^{\text {ii }}$	2.1226 (15)	$\mathrm{Cu} 2-\mathrm{O} 7^{\text {ii }}$	1.987 (2)
$\mathrm{Mn} 1-\mathrm{O} 3{ }^{\text {iii }}$	2.0923 (16)	$\mathrm{Cu} 2-\mathrm{O} 6^{\text {iv }}$	1.955 (2)
Mn1-O4	2.3314 (17)	$\mathrm{Cu} 2-\mathrm{O} 4$	1.975 (2)
Mn1-O6	2.4125 (17)	$\mathrm{Cu} 2-\mathrm{O} 8^{\text {v }}$	1.993 (2)
Mn1-O7	2.3861 (15)	$\mathrm{Mn} 3-\mathrm{O} 2^{\text {vi }}$	2.1597 (16)
Mn2-O3	2.491 (2)	$\mathrm{Mn} 3-\mathrm{O} 2^{\text {vii }}$	2.1892 (16)
Mn2-O4	1.885 (3)	Mn3-O5	2.0359 (16)
$\mathrm{Mn} 2-\mathrm{O} 6^{\text {iv }}$	1.891 (3)	Mn3-O5 ${ }^{\text {iii }}$	2.1398 (16)
$\mathrm{Mn} 2-\mathrm{O} 7^{\text {ii }}$	2.047 (3)	$\mathrm{Mn} 3-\mathrm{O} 8^{\text {viii }}$	2.0896 (15)

Symmetry codes: (i) $x, y, z+1$; (ii) $-x+1,-y,-z+1$; (iii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iv) $x, y, z-1$; (v) $-x,-y,-z+1$; (vi) $x+1, y, z$; (vii) $x+1,-y+\frac{1}{2}, z-\frac{1}{2}$; (viii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$.
result is obtained by allowing the Mn and Cu atoms to refine freely with site-occupancy factors constrained to sum to unity. The refined site-occupancy factors of 0.489 (9):0.511 (9) for Mn2:Cu2 do not differ significantly from 0.5 , and they were therefore constrained to 0.5 for the final cycles of refinement. There is no clear evidence for any Cu content at the Mn 1 or Mn 3 sites, although trace occupancy cannot be excluded. The labelling scheme chosen for the atoms corresponds to that used by Calvo (1968), although the positions of the atoms within the asymmetric unit have been changed in order to minimize as far as possible the number of symmetry operators required in Fig. 1 and Table 1.

Data collection: APEX2 (Bruker-Nonius, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to
refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and ATOMS (Dowty, 1997).

The authors are grateful to the Danish Natural Sciences Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA3246). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker-Nonius (2004). APEX2. Bruker-Nonius BV, Delft, The Netherlands. Calvo, C. (1968). Am. Mineral. 53, 742-750.
Dowty, E. (1997). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
El Bali, B., Boukhari, A., Glaum, R., Gerk, M. \& Maass, K. (2000). Z. Anorg. Allg. Chem. 626, 2557-2562.
Massa, W., Yakubovich, O. V. \& Dimitrova, O. V. (2005). Solid State Sci. 7, 950956.

Moore, P. B. \& Ito, J. (1979). Mineral. Mag. 43, 227-235.
Nord, A. G. (1982). Mater. Res. Bull. 17, 1001-1010.
Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stephens, J. S. \& Calvo, C. (1969). Can. J. Chem. 47, 2215-2225.
Warner, T. E., Milius, M. \& Maier, J. (1993). J. Solid State Chem. 106, 301-309.

